Title of article :
Positive solutions of nonresonance semipositone singular Dirichlet boundary value problems
Original Research Article
Author/Authors :
Xinguang Zhang، نويسنده , , Lishan Liu، نويسنده , , Yonghong Wu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
In the case where the nonlinearity term is allowed to change sign, we study the nonresonance semipositone singular Dirichlet boundary value problem (BVP)
View the MathML source{−x″+ρp(t)x=λ[f(t,x)+g(t,x)],00λ>0 is a parameter, ρ>0ρ>0 is a constant. We derive an interval of λλ such that for any λλ lying in this interval, the semipositone BVP has at least one positive solution if ff is superlinear or sublinear. The results obtained improve and extend many recent results. Our approach is based on Krasnaselskii’s fixed point theorem in cones.
Keywords :
Semipositone , Singular boundary value problems , superlinear , sublinear , nonresonance , positive solutions
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Journal title :
Nonlinear Analysis Theory, Methods & Applications