• Title of article

    Some results on the forced pendulum equation Original Research Article

  • Author/Authors

    Pablo Amster، نويسنده , , Mar?a Cristina Mariani، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2008
  • Pages
    7
  • From page
    1874
  • To page
    1880
  • Abstract
    This paper is devoted to the study of the forced pendulum equation in the presence of friction, namely u″+au′+sinu=f(t)u″+au′+sinu=f(t) with a∈Ra∈R and f∈L2(0,T)f∈L2(0,T). Using a shooting type argument, we prove the existence of at least two essentially different TT-periodic solutions under appropriate conditions on TT and ff. We also prove the existence of solutions decaying with a fixed rate α∈(0,1)α∈(0,1) by the Leray–Schauder theorem. Finally, we prove the existence of a bounded solution on [0,+∞)[0,+∞) using a diagonal argument.
  • Journal title
    Nonlinear Analysis Theory, Methods & Applications
  • Serial Year
    2008
  • Journal title
    Nonlinear Analysis Theory, Methods & Applications
  • Record number

    860149