Title of article :
Existence of three positive solutions for image-point boundary-value problems with one-dimensional image-Laplacian Original Research Article
Author/Authors :
Hanying Feng، نويسنده , , Weigao Ge، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
10
From page :
2017
To page :
2026
Abstract :
In this paper, we consider the multipoint boundary value problem for the one-dimensional pp-Laplacian View the MathML source(ϕp(u′))′+q(t)f(t,u(t),u′(t))=0,t∈(0,1), Turn MathJax on subject to the boundary conditions: View the MathML sourceu(0)=0,u(1)=∑i=1m−2aiu(ξi), Turn MathJax on where ϕp(s)=|s|p−2s,p>1,ξi∈(0,1)ϕp(s)=|s|p−2s,p>1,ξi∈(0,1) with 0<ξ1<ξ2<⋯<ξm−2<10<ξ1<ξ2<⋯<ξm−2<1 and View the MathML sourceai∈[0,1),0≤∑i=1m−2ai<1. Using a fixed point theorem due to Avery and Peterson, we study the existence of at least three positive solutions to the above boundary value problem. The interesting point is that the nonlinear term ff explicitly involves a first-order derivative.
Keywords :
Multipoint boundary value problem , Avery–Peterson’s fixed point theorem , positive solution , One-dimensional pp-Laplacian
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2008
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
860163
Link To Document :
بازگشت