• Title of article

    Constant-sign and sign-changing solutions for nonlinear eigenvalue problems Original Research Article

  • Author/Authors

    Siegfried Carl، نويسنده , , Dumitru Motreanu، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2008
  • Pages
    9
  • From page
    2668
  • To page
    2676
  • Abstract
    We prove the existence of multiple constant-sign and sign-changing solutions for a nonlinear elliptic eigenvalue problem under Dirichlet boundary condition involving the pp-Laplacian. More precisely, we establish the existence of a positive solution, of a negative solution, and of a nontrivial sign-changing solution when the eigenvalue parameter λλ is greater than the second eigenvalue λ2λ2 of the negative pp-Laplacian, extending results by Ambrosetti–Lupo, Ambrosetti–Mancini, and Struwe. Our approach relies on a combined use of variational and topological tools (such as, e.g., critical points, Mountain-Pass theorem, second deformation lemma, variational characterization of the first and second eigenvalue of the pp-Laplacian) and comparison arguments for nonlinear differential inequalities. In particular, the existence of extremal nontrivial constant-sign solutions plays an important role in the proof of sign-changing solutions.
  • Keywords
    Mountain-pass theorem , Second deformation lemma , Sign-changing solutions , Extremal constant-sign solutions , nonlinear eigenvalue problem , critical points , pp-Laplacian
  • Journal title
    Nonlinear Analysis Theory, Methods & Applications
  • Serial Year
    2008
  • Journal title
    Nonlinear Analysis Theory, Methods & Applications
  • Record number

    860216