Title of article :
Study of the initial value problems appearing in a method of factorization of second-order elliptic boundary value problems
Original Research Article
Author/Authors :
J. Henry، نويسنده , , A.M. Ramos، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
In [J. Henry, A.M. Ramos, Factorization of second order elliptic boundary value problems by dynamic programming, Nonlinear Analysis. Theory, Methods & Applications 59 (2004) 629–647] we presented a method for factorizing a second-order boundary value problem into a system of uncoupled first-order initial value problems, together with a nonlinear Riccati type equation for functional operators. A weak sense was given to that system but we did not perform a direct study of those equations. This factorization utilizes either the Neumann to Dirichlet (NtD) operator or the Dirichlet to Neumann (DtN) operator, which satisfy a Riccati equation. Here we consider the framework of Hilbert–Schmidt operators, which provides tools for a direct study of this Riccati type equation. Once we have solved the system of Cauchy problems, we show that its solution solves the original second-order boundary value problem. Finally, we indicate how this techniques can be used to find suitable transparent conditions.
Keywords :
Factorization , Boundary value problem , Neumann to Dirichlet (NtD) operator , Dirichlet to Neumann (DtN) operator , Transparent conditions , Riccati equation , Invariant embedding , Hilbert–Schmidt operator
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Journal title :
Nonlinear Analysis Theory, Methods & Applications