Title of article :
Monotone CQ iteration processes for nonexpansive semigroups and maximal monotone operators Original Research Article
Author/Authors :
Yongfu Su، نويسنده , , Xiaolong Qin، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
8
From page :
3657
To page :
3664
Abstract :
Nakajo and Takahashi [K. Nakajo, W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl. 279 (2003) 372–379] proved strong convergence theorems for nonexpansive mappings, nonexpansive semigroups and the proximal point algorithm for zero-point of monotone operators in Hilbert spaces by the CQ iteration method. The purpose of this paper is to modify the CQ iteration method of K. Nakajo and W. Takahashi using the monotone CQ method, and to prove strong convergence theorems. In the proof process of this article, the Cauchy sequence method is used, so we proceed without use of the demiclosedness principle and Opial’s condition, and other weak topological techniques.
Keywords :
Strong convergence , Nonexpansive mapping , Nonexpansive semigroup , Proximal point algorithm , CQ method
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2008
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
860300
Link To Document :
بازگشت