Title of article :
Integrable decomposition of a hierarchy of soliton equations and integrable coupling system by semidirect sums of Lie algebras Original Research Article
Author/Authors :
Lin Luo، نويسنده , , Engui Fan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
12
From page :
3450
To page :
3461
Abstract :
Staring from a new spectral problem, a hierarchy of the soliton equations is derived. It is shown that the associated hierarchies are infinite-dimensional integrable Hamiltonian systems. By the procedure of nonlinearization of the Lax pairs, the integrable decomposition of the whole soliton hierarchy is given. Further, we construct two integrable coupling systems for the hierarchy by the conception of semidirect sums of Lie algebras.
Keywords :
Soliton equations , Nonlinearization , Integrable couplings , Semidirect sums of Lie algebras
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2008
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
860625
Link To Document :
بازگشت