Title of article :
Integrable decomposition of a hierarchy of soliton equations and integrable coupling system by semidirect sums of Lie algebras
Original Research Article
Author/Authors :
Lin Luo، نويسنده , , Engui Fan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
Staring from a new spectral problem, a hierarchy of the soliton equations is derived. It is shown that the associated hierarchies are infinite-dimensional integrable Hamiltonian systems. By the procedure of nonlinearization of the Lax pairs, the integrable decomposition of the whole soliton hierarchy is given. Further, we construct two integrable coupling systems for the hierarchy by the conception of semidirect sums of Lie algebras.
Keywords :
Soliton equations , Nonlinearization , Integrable couplings , Semidirect sums of Lie algebras
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Journal title :
Nonlinear Analysis Theory, Methods & Applications