Title of article :
Interpolation inequalities for derivatives in variable exponent Lebesgue–Sobolev spaces Original Research Article
Author/Authors :
Aibin Zang، نويسنده , , Yong Fu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
8
From page :
3629
To page :
3636
Abstract :
We show the interpolation inequalities for derivatives in variable exponent Lebesgue–Sobolev spaces by applying the boundedness of the Hardy–Littlewood maximal operator on Lp(⋅)Lp(⋅). As applications, we prove a new Landau–Komogorov type inequality for the second-order derivative and an embedding theorem and discuss the equivalent norms in the space View the MathML sourceW01,p(⋅)(Ω)∩W2,p(⋅)(Ω).
Keywords :
Variable exponent Lebesgue–Sobolev space , Maximal function operator , Landau–Kolmogorov type inequality , Interpolation inequality
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2008
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
860637
Link To Document :
بازگشت