Title of article :
Natural bicubic spline fractal interpolation Original Research Article
Author/Authors :
A.K.B. Chand، نويسنده , , M.A. Navascués، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
13
From page :
3679
To page :
3691
Abstract :
Fractal Interpolation functions provide natural deterministic approximation of complex phenomena. Cardinal cubic splines are developed through moments (i.e. second derivative of the original function at mesh points). Using tensor product, bicubic spline fractal interpolants are constructed that successfully generalize classical natural bicubic splines. An upper bound of the difference between the natural cubic spline blended fractal interpolant and the original function is deduced. In addition, the convergence of natural bicubic fractal interpolation functions towards the original function providing the data is studied.
Keywords :
Fractals , Iterated function systems , Cardinal splines , Blending function , Surface approximation , Fractal interpolation functions
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2008
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
860641
Link To Document :
بازگشت