Title of article :
On the number of limit cycles surrounding a unique singular point for polynomial differential systems of arbitrary degree Original Research Article
Author/Authors :
Belén Garc?a، نويسنده , , Jaume Llibre، نويسنده , , Jes?s S. Pérez del R?o، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
9
From page :
4461
To page :
4469
Abstract :
We study the number of limit cycles that bifurcate from the periodic orbits of the center View the MathML sourceẋ=−yR(x,y), View the MathML sourceẏ=xR(x,y) where RR is a convenient polynomial of degree 2, when we perturb it inside the class of all polynomial differential systems of degree nn. We use averaging theory for computing this number. As a consequence of our study we provide the biggest number of limit cycles surrounding a unique singular point in terms of the degree of the system, known up to now.
Keywords :
Averaging theory , Bifurcation from a center , limit cycle
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2008
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
860701
Link To Document :
بازگشت