Title of article :
Existence and asymptotic behavior of C1 solutions to the multi-dimensional compressible Euler equations with damping Original Research Article
Author/Authors :
Daoyuan Fang، نويسنده , , Jiang Xu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
18
From page :
244
To page :
261
Abstract :
In this paper, the existence and asymptotic behavior of C1C1 solutions to the multi-dimensional compressible Euler equations with damping on the framework of Besov space are considered. Comparing with the well-posedness results of Sideris–Thomases–Wang [T. Sideris, B. Thomases, D.H. Wang, Long time behavior of solutions to the three-dimensional compressible Euler with damping, Comm. Partial Differential Equations 28 (2003) 953–978], we weaken the regularity assumptions on the initial data. The global existence lies on a crucial a-priori estimate which is obtained by the spectral localization method. The main analytic tools are the Littlewood–Paley decomposition and Bony’s paraproduct formula.
Keywords :
Damping , Euler equations , classical solutions , Spectral localization
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2009
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
860749
Link To Document :
بازگشت