Title of article :
Linear estimate for the number of limit cycles of a perturbed cubic polynomial differential system
Original Research Article
Author/Authors :
Jaume Llibre، نويسنده , , Hao Wu، نويسنده , , Jiang Yu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
Perturbing the cubic polynomial differential systems View the MathML sourceẋ=−y(a1x+a0)(b1y+b0), View the MathML sourceẏ=x(a1x+a0)(b1y+b0) having a center at the origin inside the class of all polynomial differential systems of degree nn, we obtain using the averaging theory of second order that at most 17n+1517n+15 limit cycles can bifurcate from the periodic orbits of the center.
Keywords :
limit cycle , Averaging theory , Polynomial differential system
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Journal title :
Nonlinear Analysis Theory, Methods & Applications