Title of article :
Singular boundary value problems for the Monge–Ampère equation Original Research Article
Author/Authors :
Ahmed Mohammed، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
8
From page :
457
To page :
464
Abstract :
Given a strictly convex, smooth, and bounded domain ΩΩ in RnRn we consider solving the Monge–Ampére equation det(D2u)=f(x,−u)det(D2u)=f(x,−u) for solutions in View the MathML sourceC∞(Ω)∩C(Ω¯) with zero boundary value, where the nonlinearity f(x,t)f(x,t) could be singular at t=0t=0. We will show that under some fairly general assumptions on ff the above Dirichlet problem admits a negative convex solution in ΩΩ. Uniqueness of such solutions is then established for a wide class of nonlinearities f(x,t)f(x,t) as a consequence of a comparison principle.
Keywords :
Singular boundary value problem , comparison principle , supersolution , Alexandrov–Bakelman–Pucci maximum principle , first eigenvalue , subsolution
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2009
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
860768
Link To Document :
بازگشت