• Title of article

    Solving the Karush–Kuhn–Tucker system of a nonconvex programming problem on an unbounded set Original Research Article

  • Author/Authors

    Qing Xu، نويسنده , , Bo Yu، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2009
  • Pages
    7
  • From page
    757
  • To page
    763
  • Abstract
    In the papers [G.C. Feng, B. Yu, Combined homotopy interior point method for nonlinear programming problems, in: H. Fujita, M. Yamaguti (Eds.), Advances in Numerical Mathematics; Proceedings of the Second Japan–China Seminar on Numerical Mathematics, in: Lecture Notes in Numerical and Applied Analysis, vol. 14, Kinokuniya, Tokyo, 1995, pp. 9–16; G.C. Feng, Z.H. Lin, B. Yu, Existence of an interior pathway to a Karush–Kuhn–Tucker point of a nonconvex programming problem, Nonlinear Analysis 32 (1998) 761–768; Z.H. Lin, B. Yu, G.C. Feng, A combined homotopy interior point method for convex programming problem, Applied Mathematics and Computation 84 (1997) 193–211], a combined homotopy interior method was presented and global convergence results obtained for nonconvex nonlinear programming when the feasible set is bounded and satisfies the so called normal cone condition. However, for when the feasible set is not bounded, no result has so far been obtained. In this paper, a combined homotopy interior method for nonconvex programming problems on the unbounded feasible set is considered. Under suitable additional assumptions, boundedness of the homotopy path, and hence global convergence, is proven.
  • Keywords
    Unbounded set , Nonconvex programming , Homotopy method , global convergence
  • Journal title
    Nonlinear Analysis Theory, Methods & Applications
  • Serial Year
    2009
  • Journal title
    Nonlinear Analysis Theory, Methods & Applications
  • Record number

    860793