Title of article :
Asymptotics for a variational problem with critical growth and slightly positive Dirichlet data Original Research Article
Author/Authors :
Shigeru Moriyama، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
22
From page :
1146
To page :
1167
Abstract :
Let ΩΩ be a bounded smooth domain in View the MathML sourceRN, N≥3N≥3. We consider the variational problem inf∫Ω|∇u|2inf∫Ω|∇u|2 for the admissible class View the MathML sourceAγ,ε={u∈H1(Ω)|u−ε∈H01(Ω),γ=∫Ω|u|p+1>meas(Ω)εp+1} Turn MathJax on with p=(N+2)/(N−2)p=(N+2)/(N−2), ε>0ε>0. Caffarelli and Spruck [L.A. Caffarelli, J. Spruck, Variational problems with critical Sobolev growth and positive Dirichlet data, Indiana Univ. Math. J. 39 (1990) 1–18] proved the existence of the solution uγ,εuγ,ε satisfying View the MathML source{−Δuγ,ε=λγ,εuγ,εpin Ωuγ,ε=εon ∂Ω Turn MathJax on for λγ,ε>0λγ,ε>0. We prove that the solution concentrates at exactly one interior point as εε goes to zero. Furthermore we study the exact rate and location of the blowing up
Keywords :
semilinear elliptic equation , critical Sobolev exponent , Robin function , Pohozaev’s identity
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2009
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
860824
Link To Document :
بازگشت