Title of article :
Existence and unicity of solutions for a non-local relaxation equation Original Research Article
Author/Authors :
F. Paparella، نويسنده , , E. Pascali، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
9
From page :
1702
To page :
1710
Abstract :
We study the following one-dimensional evolution equation: View the MathML source∂u∂t(x,t)=∫A+u(x,t)λ1(ξ,t)(u(ξ,t)−u(x,t))dξ−∫A−u(x,t)λ2(ξ,t)(u(x,t)−u(ξ,t))dξ, Turn MathJax on where View the MathML sourceA+u(x,t)={ξ∈[0,1]∣u(ξ,t)>u(x,t)},A−u(x,t)=[0,1]∖A+u(x,t), and λ1λ1, λ2λ2 are non-negative functions. We prove the existence of solutions for a particular class of initial data u(x,0)u(x,0). We also prove that the solutions are unique. Finally, under additional constraints on the initial data, we give an explicit expression for the solution.
Keywords :
integro-differential equation , Relaxation equation , existence and uniqueness
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2009
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
860868
Link To Document :
بازگشت