Title of article :
On the Dirichlet problem involving the equation −Δpu=λus−1
Author/Authors :
GIOVANNI ANELLO، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
7
From page :
2060
To page :
2066
Abstract :
We study, with λλ varying in R+R+, the behavior of the LsLs-norm of the unique positive solution of the following Dirichlet problem View the MathML source{−Δpu=λus−1in Ωu∣∂Ω=0 Turn MathJax on when s→p−s→p−. In particular, we prove that this norm is asymptotic to View the MathML sourceC(λλp)1p−s for some positive constant CC, where λpλp is the first eigenvalue of the pp-Laplacian on ΩΩ.
Keywords :
variational methods , Sublinear nonlinearity , Asymptotic behavior , positive solutions , Elliptic boundary value problems
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2009
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
860900
Link To Document :
بازگشت