Title of article :
Periodic solutions for a class of neutral functional differential equations with infinite delay Original Research Article
Author/Authors :
Kalilou Sidibe and Guirong Liu، نويسنده , , Weiping Yan، نويسنده , , Jurang Yan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
10
From page :
604
To page :
613
Abstract :
In this paper, we study the existence and uniqueness of periodic solutions of the nonlinear neutral functional differential equation with infinite delay of the form View the MathML sourceddt(x(t)−∫−∞0g(s,x(t+s))ds)=A(t,x(t))x(t)+f(t,xt). Turn MathJax on In the process we use the fundamental matrix solution of x′(t)=A(t,u(t))x(t)x′(t)=A(t,u(t))x(t) Turn MathJax on and construct appropriate mappings, where u∈C(R,Rn)u∈C(R,Rn) is an ωω-periodic function. Then we employ matrix measure and the Leray–Schauder fixed point theorem to show the existence of periodic solutions of this neutral differential equation. In the special case where g(s,u)≡0g(s,u)≡0 and A(t,x)=A(t)A(t,x)=A(t), some sufficient conditions which ensure the uniform stability and global attractivity of a unique periodic solution are derived.
Keywords :
Neutral differential equation , infinite delay , Periodic solution , Leray–Schauder
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2009
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
861201
Link To Document :
بازگشت