Title of article :
Homogenization and reduction of dimension for nonlinear parametric variational inequalities Original Research Article
Author/Authors :
J?zsef Kolumb?n، نويسنده , , Iuliana Marchis، نويسنده , , Tünde Sz?sz، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
10
From page :
819
To page :
828
Abstract :
In this paper we study the limit behavior of the solution uϵuϵ of a parametric variational inequality, governed by a nonlinear differential operator, the gradient operator ∇∇ being replaced by another operator ∇ϵ∇ϵ, with the positive parameter ϵϵ (ϵ→0ϵ→0). Generalizing earlier results of Courilleau and Mossino [P. Courilleau, J. Mossino, Compensated compactness for nonlinear homogenization and reduction of dimension, Calculus of Variations 20 (2004) 65–91], we show that, up to a subsequence, uϵuϵ weakly converges to a solution of a limit problem. For quasilinear operators, we show that the limit problem can be formulated on a lower dimensional domain.
Keywords :
Variational inequalities , Homogenization , reduction of dimension
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2009
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
861222
Link To Document :
بازگشت