Title of article :
The number of limit cycles of a quintic polynomial system with center Original Research Article
Author/Authors :
Ali Atabaigi، نويسنده , , Nemat Nyamoradi، نويسنده , , Hamid R.Z. Zangeneh، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
10
From page :
3008
To page :
3017
Abstract :
In this paper we study the global bifurcation of limit cycles for the system View the MathML sourceẋ=y(1+x4),ẏ=−x(1+x4)+εy2m−1Σj=0lajxj for εε sufficiently small, where View the MathML sourcel=2n+2or2n+3, m,nm,n are arbitrary positive integers and a0,a1,…,ala0,a1,…,al are real. We have used Argument principle to give estimate of an upper bound for the number of limit cycles that can bifurcate from period annulus of this system for ε=0ε=0. Furthermore we have shown that there exist a set of constant a0,a1,…,ala0,a1,…,al where the related abelian integral of this system has at least 3m+n−23m+n−2 isolated zeros. We have, in order to prove our result applied the Argument Principle to a complex extension of the Abelian integral.
Keywords :
Zeros of Abelian integrals , Hilbert’s 16th problem , Limit cycles , Argument principles
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2009
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
861423
Link To Document :
بازگشت