Title of article :
Strong convergence of iteration algorithms for a countable family of nonexpansive mappings Original Research Article
Author/Authors :
Yisheng Song، نويسنده , , Yunchun Zheng، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
11
From page :
3072
To page :
3082
Abstract :
For a countable family View the MathML source{Tn}n=1+∞ of nonexpansive mappings, a strong convergence of Halpern type iteration is shown in order to find a common fixed point of View the MathML source{Tn}n=1+∞ in a reflexive Banach space when αn∈[0,1]αn∈[0,1] satisfies the conditions (C1) limn→∞αn=0limn→∞αn=0 and (C2) View the MathML source∑n=1∞αn=∞, and several examples satisfying the condition (B) is given also. We also research the strong convergence of the proximal point algorithm. Finally, we apply our results to solve the equilibrium problems and variational inequalities for continuous monotone mappings.
Keywords :
Halpern type iteration , Countable family of nonexpansive mappings , reflexive Banach space , Uniformly Gâteaux differentiable
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2009
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
861429
Link To Document :
بازگشت