Title of article :
Nodal and multiple constant sign solutions for resonant pp-Laplacian equations with a nonsmooth potential
Author/Authors :
Leszek Gasinski، نويسنده , , Nikolaos S. Papageorgiou، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
26
From page :
5747
To page :
5772
Abstract :
In this paper we study a nonlinear Dirichlet elliptic differential equation driven by the pp-Laplacian and with a nonsmooth potential (hemivariational inequality). Using a variational approach combined with suitable truncation techniques and the method of upper–lower solutions, we prove the existence of five nontrivial smooth solutions, two positive, two negative and the fifth nodal. Our hypotheses on the nonsmooth potential allow resonance at infinity with respect to the principal eigenvalue λ1>0λ1>0 of View the MathML source(−Δp,W01,p(Z)).
Keywords :
Generalized subdifferential , Nodal solutions , Second deformation theorem , pp-Laplacian , Upper–lower solutions , Linking sets , Second eigenvalue
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2009
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
861675
Link To Document :
بازگشت