Title of article
Maximum and antimaximum principles for some nonlocal diffusion operators Original Research Article
Author/Authors
Jorge Garc?a-Meli?n، نويسنده , , and Julio D. Rossi ، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2009
Pages
6
From page
6116
To page
6121
Abstract
In this work we consider the maximum and antimaximum principles for the nonlocal Dirichlet problem
View the MathML sourceJ∗u−u+λu+h=∫RNJ(x−y)u(y)dy−u(x)+λu(x)+h(x)=0
Turn MathJax on
in a bounded domain ΩΩ, with u(x)=0u(x)=0 in RN∖ΩRN∖Ω. The kernel JJ in the convolution is assumed to be a continuous, compactly supported nonnegative function with unit integral. We prove that for λ<λ1(Ω)λ<λ1(Ω), the solution verifies u>0u>0 in View the MathML sourceΩ¯ if h∈L2(Ω)h∈L2(Ω), h≥0h≥0, while for λ>λ1(Ω)λ>λ1(Ω), and λλ close to λ1(Ω)λ1(Ω), the solution verifies u<0u<0 in View the MathML sourceΩ¯, provided View the MathML source∫Ωh(x)ϕ(x)dx>0, h∈L∞(Ω)h∈L∞(Ω). This last assumption is also shown to be optimal. The “Neumann” version of the problem is also analyzed.
Keywords
Nonlocal diffusion , principal eigenvalue , Antimaximum principle , Maximum principle
Journal title
Nonlinear Analysis Theory, Methods & Applications
Serial Year
2009
Journal title
Nonlinear Analysis Theory, Methods & Applications
Record number
861710
Link To Document