Title of article :
Linking method applied to a class of a system of critical growth wave equations Original Research Article
Author/Authors :
Tacksun Jung، نويسنده , , Q-Heung Choi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
8
From page :
73
To page :
80
Abstract :
We show the existence of at least two solutions for a class of a system of critical growth wave equations, with periodic condition on tt and the Dirichlet boundary condition View the MathML sourceutt−uxx=av+2αα+βu+α−1v+β+fin (−π2,π2)×R, Turn MathJax on View the MathML sourcevtt−vxx=bu+2βα+βu+αv+β−1+gin (−π2,π2)×R, Turn MathJax on where αα, β>1β>1 are real constants, u+=max{u,0}u+=max{u,0}. We first show that the system has a negative solution under suitable conditions on the matrix View the MathML sourceA=(0ab0), ff, gg, and next show that the system has another solution for the same conditions on AA, ff and gg by the linking arguments.
Keywords :
Boundary value problem , System of critical growth wave equations , Linking arguments , Eigenvalue of a matrix
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2009
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
861743
Link To Document :
بازگشت