Title of article :
Mann iteration of Cesàro means for asymptotically non-expansive mappings Original Research Article
Author/Authors :
Yisheng Song، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
7
From page :
176
To page :
182
Abstract :
Let KK be a nonempty closed convex subset of a uniformly convex Banach space EE with a uniformly Gâteaux differentiable norm. Suppose that T:K→KT:K→K is an asymptotically non-expansive mapping and for arbitrary initial value x0∈Kx0∈K, we will introduce the Mann iteration of its Cesàro means: View the MathML sourcexn+1=αnxn+(1−αn)1n+1∑j=0nTjxn,n≥0, Turn MathJax on and prove its strong and weak convergence whenever View the MathML source∑n=0∞bn<+∞ and {αn}{αn} is a real sequence in (0,1)(0,1) satisfying one of the conditions: either (i) limn→∞αn=0limn→∞αn=0 or (ii) View the MathML source∑n=0∞αn(1−αn)=+∞ or (iii) 0
Keywords :
Cesàro means , Mann iteration , Uniformly convex , Asymptotically non-expansive mapping
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2010
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
862081
بازگشت