Title of article :
Optimal control problem with an integral equation as the control object Original Research Article
Author/Authors :
Darya Filatova، نويسنده , , Marek Grzywaczewski، نويسنده , , Nikolay Osmolovskii، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
12
From page :
1235
To page :
1246
Abstract :
We consider a nonlinear optimal control problem with an integral equation as the control object, subject to control constraints. This integral equation corresponds to the fractional moment of a stochastic process involving short-range and long-range dependences. For both cases, we derive the first-order necessary optimality conditions in the form of the Euler–Lagrange equation, and then apply them to obtain a numerical solution of the problem of optimal portfolio selection.
Keywords :
Control constraint , Numerical solution , Adjoint equation , Integral equation , Maximum principle , Portfolio selection problem
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2010
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
862173
Link To Document :
بازگشت