Title of article :
A generalized anti-maximum principle for the periodic one-dimensional pp-Laplacian with sign-changing potential
Author/Authors :
Alberto Cabada، نويسنده , , José ?ngel Cid، نويسنده , , Milan Tvrd?، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
11
From page :
3436
To page :
3446
Abstract :
It is known that the anti-maximum principle holds for the quasilinear periodic problem View the MathML source(|u′|p−2u′)′+μ(t)(|u|p−2u)=h(t),u(0)=u(T),u′(0)=u′(T), Turn MathJax on if μ≥0μ≥0 in [0,T][0,T] and View the MathML source0<‖μ‖∞≤(πp/T)p,whereπp=2(p−1)1/p∫01(1−sp)−1/pds, Turn MathJax on or View the MathML sourcep=2and0<‖μ‖α≤inf{‖u′‖22‖u‖α2:u∈W01,2[0,T]∖{0}}for some α,1≤α≤∞. Turn MathJax on In this paper we give sharp conditions on the LαLα-norm of the potential μ(t)μ(t) in order to ensure the validity of the anti-maximum principle even in the case where μ(t)μ(t) can change its sign in [0,T][0,T].
Keywords :
Anti-maximum principle , Periodic problem , Dirichlet problem , pp-Laplacian , Singular problem
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2010
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
862372
Link To Document :
بازگشت