• Title of article

    Structural stability for variable exponent elliptic problems, I: The image-Laplacian kind problems Original Research Article

  • Author/Authors

    B. Andreianov، نويسنده , , M. Bendahmane، نويسنده , , S. Ouaro، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2010
  • Pages
    23
  • From page
    2
  • To page
    24
  • Abstract
    We study the structural stability (i.e., the continuous dependence on coefficients) of solutions of the elliptic problems under the form View the MathML sourceb(un)−divan(x,∇un)=fn. Turn MathJax on The equation is set in a bounded domain View the MathML sourceΩ of RNRN and supplied with the homogeneous Dirichlet boundary condition on View the MathML source∂Ω. Here bb is a non-decreasing function on RR, and (an(x,ξ))n(an(x,ξ))n is a family of applications which verifies the classical Leray–Lions hypotheses but with a variable summability exponent pn(x)pn(x), 1
  • Keywords
    p(x)p(x)-Laplacian , Leray–Lions operator , Variable exponent , Thermorheological fluids , Well-posedness , Convergence of minimizers , Young measures , continuous dependence
  • Journal title
    Nonlinear Analysis Theory, Methods & Applications
  • Serial Year
    2010
  • Journal title
    Nonlinear Analysis Theory, Methods & Applications
  • Record number

    862486