Title of article :
Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces Original Research Article
Author/Authors :
Simeon Reich، نويسنده , , Shoham Sabach، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
14
From page :
122
To page :
135
Abstract :
We study the convergence of two iterative algorithms for finding common fixed points of finitely many Bregman strongly nonexpansive operators in reflexive Banach spaces. Both algorithms take into account possible computational errors. We establish two strong convergence theorems and then apply them to the solution of convex feasibility, variational inequality and equilibrium problems.
Keywords :
Variational inequality , Totally convex function , Banach space , Bregman inverse strongly monotone operator , Bregman distance , Bregman firmly nonexpansive operator , Bregman projection , Bregman strongly nonexpansive operator , Convex feasibility problem , Equilibrium problem , Legendre function , Iterative algorithm , monotone operator
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2010
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
862496
Link To Document :
بازگشت