Title of article :
Global existence of solutions for a fourth-order nonlinear Schrödinger equation in image dimensions Original Research Article
Author/Authors :
Cuihua Guo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
9
From page :
555
To page :
563
Abstract :
We study the global well-posedness for the Cauchy problem of the fourth-order nonlinear Schrödinger equation View the MathML sourceiut+λΔu+μΔ2u+ν|u|2mu=0,x∈Rn,t∈R. By using the I-method, we prove that if View the MathML sources>1+mn−9+(4m−mn+7)2+164m, then the Cauchy problem is globally well-posed in Hs(Rn)Hs(Rn) for either the case λ<0,μ>0,ν>0λ<0,μ>0,ν>0 or the case λ>0,μ<0,ν<0λ>0,μ<0,ν<0 with m,nm,n satisfying some conditions.
Keywords :
Fourth-order Schr?dinger equation , Global existence , I-method , Cauchy problem
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2010
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
862534
Link To Document :
بازگشت