Title of article :
Nonexistence, existence and multiplicity of positive solutions to the image-Laplacian nonlinear Neumann boundary value problem Original Research Article
Author/Authors :
Shao-Gao Deng، نويسنده , , Qin Wang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
14
From page :
2170
To page :
2183
Abstract :
We study the nonexistence, existence and multiplicity of positive solutions for the nonlinear Neumann boundary value problem involving the p(x)p(x)-Laplacian of the form View the MathML source{−Δp(x)u+λ|u|p(x)−2u=f(x,u)in Ω|∇u|p(x)−2∂u∂η=g(x,u)on ∂Ω, Turn MathJax on where ΩΩ is a bounded smooth domain in View the MathML sourceRN, View the MathML sourcep∈C1(Ω¯) and p(x)>1p(x)>1 for View the MathML sourcex∈Ω¯. Using the sub–supersolution method and the variational principles, under appropriate assumptions on ff and gg, we prove that there exists λ∗>0λ∗>0 such that the problem has at least two positive solutions if λ>λ∗λ>λ∗, has at least one positive solution if λ=λ∗λ=λ∗ and has no positive solution if λ<λ∗λ<λ∗.
Keywords :
Sub–supersolution method , variational principle , Nonlinear Neumann boundary value problem , positive solution , p(x)p(x)-Laplacian
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2010
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
862670
Link To Document :
بازگشت