Title of article :
Hölder continuity of image-superharmonic functions Original Research Article
Author/Authors :
A. Lyaghfouri، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
12
From page :
2433
To page :
2444
Abstract :
In this paper we show that a solution of the equation −Δp(x)u=μ−Δp(x)u=μ is Hölder continuous with exponent αα if and only if the nonnegative Radon measure μμ satisfies the growth condition μ(Br(x))≤Crn−p(x)+α(p(x)−1)μ(Br(x))≤Crn−p(x)+α(p(x)−1) for any ball View the MathML sourceBr(x)⊂Ω, with rr small enough. This extends an old result of Lewy and Stampacchia for the Laplace operator, and a recent result of Kilpeläinen and Zhong for the pp-Laplace operator with pp constant.
Keywords :
p(x)p(x)-superharmonic functions , p(x)p(x)-Laplace operator , Variable exponent Sobolev spaces , Radon measure , H?lder continuity
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2010
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
862695
Link To Document :
بازگشت