Title of article :
On superlinear image-Laplacian equations in image Original Research Article
Author/Authors :
Claudianor O. Alves، نويسنده , , Shibo Liu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
14
From page :
2566
To page :
2579
Abstract :
We consider the p(x)p(x)-Laplacian equations in View the MathML sourceRN. The nonlinearity is superlinear but does not satisfy the Ambrosetti–Rabinowitz type condition. We obtain ground states of the equations, improving a recent result of Fan [X.L. Fan, p(x)p(x)-Laplacian equations in View the MathML sourceRN with periodic data and nonperiodic perturbations, J. Math. Anal. Appl. 341 (2008) 103–119]. We also establish a Bartsch–Wang type compact embedding theorem for variable exponent spaces. Then, a multiplicity result for the equations is proved for odd nonlinearity.
Keywords :
p(x)p(x)-Laplacian , Superlinear problems , Cerami sequences , Fountain theorem
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2010
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
862706
Link To Document :
بازگشت