Title of article :
Equivariant bifurcation index Original Research Article
Author/Authors :
Gabriel L?pez Garza، نويسنده , , Slawomir Rybicki، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
13
From page :
2779
To page :
2791
Abstract :
We consider a bifurcation index View the MathML sourceBIFG(νk0−1)∈U(G) defined in terms of the degree for GG-equivariant gradient maps, see Gȩba (1997) [21], Rybicki (1994) [22], Rybicki (2005) [23], where GG is a real, compact, connected Lie group and U(G)U(G) is the Euler ring of GG, see tom Dieck (1977) [29], tom Dieck (1987) [30]. The main result of this article is the following: View the MathML sourceBIFG(νk0−1)≠Θ∈U(G) iff BIFT(νk0−1)≠Θ∈U(T), Turn MathJax on where T⊂GT⊂G is a maximal torus of GG. It is also shown that all the bifurcation points of weak solutions of the following problem View the MathML source{−Δu=f(u,λ)inBn,u=0onSn−1, Turn MathJax on are global bifurcation points. Additionally, the global symmetry breaking bifurcation points are characterised.
Keywords :
Compact Lie group , Symmetry breaking , Elliptic PDE , Equivariant gradient degree
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2010
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
862722
Link To Document :
بازگشت