Title of article :
Equivariant bifurcation index
Original Research Article
Author/Authors :
Gabriel L?pez Garza، نويسنده , , Slawomir Rybicki، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
We consider a bifurcation index View the MathML sourceBIFG(νk0−1)∈U(G) defined in terms of the degree for GG-equivariant gradient maps, see Gȩba (1997) [21], Rybicki (1994) [22], Rybicki (2005) [23], where GG is a real, compact, connected Lie group and U(G)U(G) is the Euler ring of GG, see tom Dieck (1977) [29], tom Dieck (1987) [30].
The main result of this article is the following:
View the MathML sourceBIFG(νk0−1)≠Θ∈U(G) iff BIFT(νk0−1)≠Θ∈U(T),
Turn MathJax on
where T⊂GT⊂G is a maximal torus of GG.
It is also shown that all the bifurcation points of weak solutions of the following problem
View the MathML source{−Δu=f(u,λ)inBn,u=0onSn−1,
Turn MathJax on
are global bifurcation points. Additionally, the global symmetry breaking bifurcation points are characterised.
Keywords :
Compact Lie group , Symmetry breaking , Elliptic PDE , Equivariant gradient degree
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Journal title :
Nonlinear Analysis Theory, Methods & Applications