Title of article :
On the stability of the first-order linear recurrence in topological vector spaces Original Research Article
Author/Authors :
Mohammad Sal Moslehian، نويسنده , , Dorian Popa، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
8
From page :
2792
To page :
2799
Abstract :
Suppose that XX is a sequentially complete Hausdorff locally convex space over a scalar field KK, VV is a bounded subset of XX, (an)n≥0(an)n≥0 is a sequence in K∖{0}K∖{0} with the property lim infn→∞|an|>1lim infn→∞|an|>1, and (bn)n≥0(bn)n≥0 is a sequence in XX. We show that for every sequence (xn)n≥0(xn)n≥0 in XX satisfying View the MathML sourcexn+1−anxn−bn∈V(n≥0) Turn MathJax on there exists a unique sequence (yn)n≥0(yn)n≥0 satisfying the recurrence View the MathML sourceyn+1=anyn+bn(n≥0), and for every qq with 1
Keywords :
First-order linear recurrence , Stability , topological vector spaces , Convex hull , Balanced hull
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2010
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
862723
بازگشت