Title of article :
Liouville theorems for quasi-harmonic functions Original Research Article
Author/Authors :
Xiangrong Zhu، نويسنده , , Meng Wang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
7
From page :
2890
To page :
2896
Abstract :
Let NN be a compact Riemannian manifold. A self-similar solution for the heat flow is a harmonic map from View the MathML source(Rn,e−|x|2/2(n−2)ds02) to NN (n≥3n≥3), which was also called a quasi-harmonic sphere (cf. Lin and Wang (1999) [1]). (Here View the MathML sourceds02 is the Euclidean metric in View the MathML sourceRn.) It arises from the blow-up analysis of the heat flow at a singular point. When View the MathML sourceN=R and without the energy constraint, we call this a quasi-harmonic function. In this paper, we prove that there is neither a nonconstant positive quasi-harmonic function nor a nonconstant View the MathML sourceLp(Rn,e−|x|2/2(n−2)ds02)(p>nn−2) quasi-harmonic function. However, for all 1≤p≤n/(n−2)1≤p≤n/(n−2), there exists a nonconstant quasi-harmonic function in View the MathML sourceLp(Rn,e−|x|2/2(n−2)ds02).
Keywords :
Liouville theorem , Quasi-harmonic function
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2010
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
862732
Link To Document :
بازگشت