Title of article :
Duality and subdifferential for convex functions on complete image metric spaces Original Research Article
Author/Authors :
Bijan Ahmadi Kakavandi، نويسنده , , Massoud Amini، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
6
From page :
3450
To page :
3455
Abstract :
Thanks to the recent concept of quasilinearization of Berg and Nikolaev, we have introduced the notion of duality and subdifferential on complete CAT(0)CAT(0) (Hadamard) spaces. For a Hadamard space XX, its dual is a metric space X∗X∗ which strictly separates non-empty, disjoint, convex closed subsets of XX, provided that one of them is compact. If f:X→(−∞,+∞]f:X→(−∞,+∞] is a proper, lower semicontinuous, convex function, then the subdifferential ∂f:X⇉X∗∂f:X⇉X∗ is defined as a multivalued monotone operator such that, for any y∈Xy∈X there exists some x∈Xx∈X with View the MathML sourcexy⃗∈∂f(x). When XX is a Hilbert space, it is a classical fact that R(I+∂f)=XR(I+∂f)=X. Using a Fenchel conjugacy-like concept, we show that the approximate subdifferential ∂ϵf(x)∂ϵf(x) is non-empty, for any ϵ>0ϵ>0 and any xx in efficient domain of ff. Our results generalize duality and subdifferential of convex functions in Hilbert spaces.
Keywords :
subdifferential , Hadamard space , Quasilinearization , Dual space
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2010
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
862782
Link To Document :
بازگشت