Title of article :
Infinitely many solutions for diffusion equations without symmetry Original Research Article
Author/Authors :
Jun Wang، نويسنده , , Junxiang Xu، نويسنده , , Fubao Zhang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
14
From page :
1290
To page :
1303
Abstract :
We consider the following diffusion system: View the MathML source{∂tu−△xu+b(t,x)∇xu+V(x)u=Hv(t,x,u,v),−∂tv−△xv+b(t,x)∇xv+V(x)v=Hu(t,x,u,v)∀(t,x)∈R×RN, Turn MathJax on which is an unbounded Hamiltonian system in L2(R×RN,R2m)L2(R×RN,R2m), z:=(u,v):R×RN→Rm×Rmz:=(u,v):R×RN→Rm×Rm, b∈C(R×RN,RN)b∈C(R×RN,RN), V∈C(RN,R)V∈C(RN,R) and H∈C1(R×RN×R2m,R)H∈C1(R×RN×R2m,R). Suppose that H,bH,b and VV depend periodically on tt and xx, and that H(t,x,z)H(t,x,z) is superquadratic in zz as |z|→∞|z|→∞. Without a symmetry assumption on HH, we establish the existence of infinitely many geometrically distinct solutions via a variational approach.
Keywords :
Unbounded Hamiltonian systems , variational methods , (C)c(C)c-condition
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2011
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
862936
Link To Document :
بازگشت