Title of article :
On a new Kato class and positive solutions of Dirichlet problems for the fractional Laplacian in bounded domains Original Research Article
Author/Authors :
Rym Chemmam، نويسنده , , Habib Maagli، نويسنده , , Syrine Masmoudi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
22
From page :
1555
To page :
1576
Abstract :
The purpose of this paper is to extend some results of the potential theory of an elliptic operator to the fractional Laplacian (−Δ)α/2(−Δ)α/2, 0<α<20<α<2, in a bounded C1,1C1,1 domain DD in RnRn. In particular, we introduce a new Kato class Kα(D)Kα(D) and we exploit the properties of this class to study the existence of positive solutions of some Dirichlet problems for the fractional Laplacian.
Keywords :
Harmonic function , Martin representation , Fractional Laplacian , Green function , Symmetric stable process , Martin boundary , Dirichlet problem
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2011
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
862997
Link To Document :
بازگشت