Title of article :
Nonlinear versions of a vector maximal principle
Original Research Article
Author/Authors :
Mihai Turinici، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
Some nonlinear extensions of the vector maximality statement established by Goepfert et al. [A. Goepfert, C. Tammer, C. Zălinescu, On the vectorial Ekeland’s variational principle and minimal points in product spaces, Nonlinear Anal. 39 (2000) 909–922] are given. Basic instruments for these are the Brezis–Browder ordering principle [H. Brezis, F.E. Browder, A general principle on ordered sets in nonlinear functional analysis, Adv. Math. 21 (1976) 355–364] and its logical equivalent in Turinici [M. Turinici, Variational principles on semi-metric structures, Libertas Math. 20 (2000) 161–171].
Keywords :
Convex cone , Quasi-order , maximal element , Bounded set , Increasing sub-additive function , Archimedean property , Gauge function
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Journal title :
Nonlinear Analysis Theory, Methods & Applications