Title of article :
Generalized nn-Laplacian: Quasilinear nonhomogenous problem with critical growth
Author/Authors :
In this paper، نويسنده , , we consider the second-order Hamiltonian system View the MathML sourceq?(t)+?V(t، نويسنده , , q(t))=f(t) where V(t، نويسنده , , q)=?K(t، نويسنده , , q)+W(t، نويسنده , , q)V(t، نويسنده , , q)=?K(t، نويسنده , , q)+W(t، نويسنده , , q). Under suitable conditions on the growth of WW and KK، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
Applying the generalized Moser–Trudinger inequality, the Mountain Pass Theorem and the Ekeland Variational Principle we study the existence of non-trivial weak solutions to the problem
View the MathML source−div(Φ′(|∇u|)∇u|∇u|)+V(x)Φ′(|u|)u|u|=f(x,u)+μh(x),x∈Rn,u∈W1LΦ(Rn)
Turn MathJax on
where ΦΦ is a Young function such that the space W1LΦ(Rn)W1LΦ(Rn) is embedded into exponential or multiple exponential Orlicz space, the nonlinearity f(x,t)f(x,t) has the corresponding critical growth, V(x)V(x) is a continuous potential, h∈(LΦ(Rn))∗h∈(LΦ(Rn))∗ is a nontrivial continuous function and μ>0μ>0 is a small parameter.
Keywords :
Orlicz–Sobolev spaces , mountain pass theorem , Ekeland variational principle , Palais–Smale sequence
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Journal title :
Nonlinear Analysis Theory, Methods & Applications