Title of article :
Uniform energy decay rates for nonlinear viscoelastic wave equation with nonlocal boundary damping
Original Research Article
Author/Authors :
Fushan Li، نويسنده , , Cuiling Zhao، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
In this paper, we consider the uniform decay estimates of solutions for the viscoelastic wave equation
View the MathML sourceutt−κ0Δu+∫0tg(t−s)div[a(x)∇u(s)]ds+b(x)h(ut)=0in Ω×(0,∞).
Turn MathJax on
Under weak assumptions on the functions g,hg,h and ff, we prove the energy functional decays exponentially or polynomially to zero as the time goes to infinity by introducing brief Lyapunov functions and precise priori estimates.
Keywords :
exponential decay , Polynomial decay , Viscoelastic , Boundary damping
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Journal title :
Nonlinear Analysis Theory, Methods & Applications