Title of article :
On homoclinic orbits for a class of noncoercive superquadratic Hamiltonian systems
Original Research Article
Author/Authors :
Mohsen Timoumi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
In this paper, we prove the existence of homoclinic solutions for a class of noncoercive first order Hamiltonian systems View the MathML sourceJẋ−M(t)x+u∗G′(t,u(x))=0, by the minimax methods in critical point theory, specially, a Generalized Mountain Pass Theorem, when uu is a linear operator with adjoint u∗u∗ and G(t,y)G(t,y) satisfies the superquadratic condition View the MathML sourceG(t,x)|y|2⟶−+∞ as |y|⟶∞|y|⟶∞, uniformly in tt, and need not satisfy the global Ambrosetti–Rabinowitz condition.
Keywords :
noncoercive , critical point theory , homoclinic orbits , Superquadratic , Hamiltonian systems
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Journal title :
Nonlinear Analysis Theory, Methods & Applications