Title of article :
Existence of an extremal ground state energy of a nanostructured quantum dot Original Research Article
Author/Authors :
F. Bahrami، نويسنده , , B. Emamizadeh، نويسنده , , A. Mohammadi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
8
From page :
6287
To page :
6294
Abstract :
This paper is concerned with two rearrangement optimization problems. These problems are motivated by two eigenvalue problems which depend nonlinearly on the eigenvalues. We consider a rational and a quadratic eigenvalue problem with Dirichlet’s boundary condition and investigate two related optimization problems where the goal function is the corresponding first eigenvalue. The first eigenvalue in the rational eigenvalue problem represents the ground state energy of a nanostructured quantum dot. In both the problems, the admissible set is a rearrangement class of a given function.
Keywords :
Minimization problems , Nonlinear eigenvalue problems , Nanostructured quantum dots , Rearrangements of a function
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2011
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
863400
Link To Document :
بازگشت