Title of article :
Regularized algorithms for hierarchical fixed-point problems Original Research Article
Author/Authors :
Yonghong Yao، نويسنده , , Rudong Chen، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
9
From page :
6826
To page :
6834
Abstract :
Let CC be a nonempty closed convex subset of a real Hilbert space HH. Let S:C→CS:C→C be a non-expansive mapping and View the MathML source{Ti}i=1∞:C→C be an infinite family of non-expansive mappings. The purpose of this paper is to find the minimum norm solution of the following general hierarchical fixed point problem View the MathML sourceFind x̃∈⋂n=1∞Fix(Tn) such that 〈x̃−Sx̃,x̃−x〉≤0,∀x∈⋂n=1∞Fix(Tn). Turn MathJax on We introduce an explicit regularized algorithm with strong convergence for finding the minimum norm solution of the above hierarchical fixed point problem.
Keywords :
Hierarchical fixed point , Regularized algorithm , Variational inequality , Strong convergence
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2011
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
863446
Link To Document :
بازگشت