Title of article :
A Lyapunov-type inequality for a ψψ-Laplacian operator
Author/Authors :
Justino S?nchez، نويسنده , , Vicente Vergara، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
7
From page :
7071
To page :
7077
Abstract :
We prove a Lyapunov-type inequality for a ψψ-Laplacian operator where ψψ is an odd increasing function which is sub-multiplicative on [0,∞)[0,∞) and View the MathML sourceΨ(s)=1ψ(s) is a convex function for s>0s>0. From this inequality we easily derive some previous results on the number of zeros, nodal domains and bounds on eigenvalues of nontrivial solutions for certain boundary value problems including the pp-Laplacian. Our method of proof does not require the standard approach via classical Jensen, Cauchy–Schwarz and Hölder inequalities.
Keywords :
Bounds on the eigenvalues , Lyapunov-type inequality , ??-Laplacian , Sub-multiplicative function , convex function
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2011
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
863469
Link To Document :
بازگشت