Title of article :
Local solutions for a coupled system of Kirchhoff type Original Research Article
Author/Authors :
A.T. Lourêdo، نويسنده , , M. Milla Miranda، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
17
From page :
7094
To page :
7110
Abstract :
We investigate the existence of local solutions of the following coupled system of Kirchhoff equations subject to nonlinear dissipation on the boundary: equation(∗∗ Turn MathJax on ) View the MathML source|u″−M1(t,‖u(t)‖2,‖v(t)‖2)△u=0in Ω×(0,∞),v″−M2(t,‖u(t)‖2,‖v(t)‖2)△v=0in Ω×(0,∞),u=0,v=0on Γ0×]0,∞[,∂u∂ν+δ1h1(u′)=0on Γ1×]0,∞[,∂u∂ν+δ2h2(u′)=0on Γ1×]0,∞[. Turn MathJax on Here {Γ0,Γ1}{Γ0,Γ1} is an appropriate partition of the boundary ΓΓ of ΩΩ and ν(x)ν(x), the outer unit normal vector at x∈Γ1x∈Γ1. By applying the Galerkin method with a special basis for the space where lie the approximations of the initial data, we obtain local solutions of the initial-boundary value problem for (∗).
Keywords :
Galerkin method , Local solutions , Nonlinear dissipation
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2011
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
863471
Link To Document :
بازگشت