Author/Authors :
V. V. Dodonov، نويسنده , , S. S. Mizrahi، نويسنده ,
Abstract :
We propose a new class of nonlinear homogeneous extension of the Doebner-Goldin Schrödinger equation, valid for arbitrary representations and operators, chosen in accordance with the investigated physical problem. We verify that the nonlinearity simulates an environment, thence, the new model leads to simple exact solutions as, for instance, the time-dependent squeezed coherent states and a special class of stationary states that we call pseudothermal, reached after relaxation. We illustrate the use of the new equation with applications to problems such as, the relaxation of a two-level or spin-1/2 system, and of the harmonic oscillator (HO) or equivalently, the emission-absorption process of photons in an electromagnetic cavity. Furthermore, in order to compare solutions for the HO example we introduce two different representations in the new equation, one continuous (positional representation) and the other discrete (Fock states).