• Title of article

    Dynamics of a creep-slip model of earthquake faults

  • Author/Authors

    Peter H?hner، نويسنده , , Yannis Drossinos، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 1998
  • Pages
    27
  • From page
    391
  • To page
    417
  • Abstract
    Starting off from the relationship between time-dependent friction and velocity softening we present a generalization of the continuous, one-dimensional homogeneous Burridge–Knopoff (BK) model by allowing for displacements by plastic creep and rigid sliding. The evolution equations describe the coupled dynamics of an order parameter-like field variable (the sliding rate) and a control parameter field (the driving force). In addition to the velocity-softening instability and deterministic chaos known from the BK model, the model exhibits a velocity-strengthening regime at low displacement rates which is characterized by anomalous diffusion and which may be interpreted as a continuum analogue of self-organized criticality (SOC). The governing evolution equations for both regimes (a generalized time-dependent Ginzburg–Landau equation and a non-linear diffusion equation, respectively) are derived and implications with regard to fault dynamics and power-law scaling of event-size distributions are discussed. Since the model accounts for memory friction and since it combines features of deterministic chaos and SOC it displays interesting implications as to (i) material aspects of fault friction, (ii) the origin of scaling, (iii) questions related to precursor events, aftershocks and afterslip, and (iv) the problem of earthquake predictability. Moreover, by appropriate re-interpretation of the dynamical variables the model applies to other SOC systems, e.g. sandpiles
  • Journal title
    Physica A Statistical Mechanics and its Applications
  • Serial Year
    1998
  • Journal title
    Physica A Statistical Mechanics and its Applications
  • Record number

    865613