Title of article
Convergence to global minima for a class of diffusion processes
Author/Authors
Jianfeng Feng، نويسنده , , Hans-Otto Georgii، نويسنده , , David Brown، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2000
Pages
12
From page
465
To page
476
Abstract
We prove that there exists a gain function (η(t),β(t))t 0 such that the solution of the SDE dxt=η(t)(−grad U(xt) dt+β(t) dBt) ‘settles’ down on the set of global minima of U. In particular, the existence of a gain function (η(t))t 0 so that yt satisfying dyt=η(t)(−grad U(yt) dt+dBt) converges to the set of the global minima of U is verified. Then we apply the results to the Robbins–Monro and the Kiefer–Wolfowitz procedures which are of particular interest in statistics.
Journal title
Physica A Statistical Mechanics and its Applications
Serial Year
2000
Journal title
Physica A Statistical Mechanics and its Applications
Record number
866343
Link To Document