• Title of article

    Convergence to global minima for a class of diffusion processes

  • Author/Authors

    Jianfeng Feng، نويسنده , , Hans-Otto Georgii، نويسنده , , David Brown، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2000
  • Pages
    12
  • From page
    465
  • To page
    476
  • Abstract
    We prove that there exists a gain function (η(t),β(t))t 0 such that the solution of the SDE dxt=η(t)(−grad U(xt) dt+β(t) dBt) ‘settles’ down on the set of global minima of U. In particular, the existence of a gain function (η(t))t 0 so that yt satisfying dyt=η(t)(−grad U(yt) dt+dBt) converges to the set of the global minima of U is verified. Then we apply the results to the Robbins–Monro and the Kiefer–Wolfowitz procedures which are of particular interest in statistics.
  • Journal title
    Physica A Statistical Mechanics and its Applications
  • Serial Year
    2000
  • Journal title
    Physica A Statistical Mechanics and its Applications
  • Record number

    866343